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Abstract—This study describes different analytical models that have 
previously been developed for predicting the radial growth and 
collapse of underwater explosion gas bubbles in a free-field 
environment. This is done by comparing computational results 
produced by various reduced model equations. The report describes 
the implementation of nine analytical gas bubble models, in the form 
of nonlinear differential equations, and a fourth-order Runge-Kutta 
solution method. This bubble is modelled using a Lagrangian mesh. 
Multiple Euler domains are used to the air inside the cylinder, the 
surrounding air, water and the explosive. Since the model includes 
air, water and explosive, a multimaterial Euler solver is required. 
Gas bubble radius time histories calculated with these models are 
compared to empirical models derived from published experimental 
data. Comparisons with empirical and theoretical formula are 
performed in order to corroborate the numerical result. 
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1. INTRODUCTION 

The early work on underwater explosion based on the bubble 
dynamics. The detonation of a mass of explosive beneath the 
ocean surface causes a complex sequence of physical 
phenomena to occur. If the detonation occurs at the centre of 
the explosive, a detonation wave then propagates to the 
surface of the explosive where it meets the surroundings 
water. The detonation wave is an approximately spherical 
volume of gas as the explosion bubble. 

This project examines various analytical models that are 
available for predicting the gas bubble growth and collapse. 
The similitude equations for explosive materials have been 
shown to provide good results for various shock parameters, 
such as the peak pressure, decay time, and energy as well as 
the gas bubble period and maximum free-field gas bubble 
radius. Major limitations of the similitude equations and 
current analytical approaches are they do not include effects of 
loading from the gas bubble collapse, they do not account for 
the close proximity of a structure and they require an 
extensive set of constants which depend on the charge 
material, which can be very difficult to obtain. Another issue 

with the similitude equations and incompressible fluid 
analytical models is the lack of energy loss predictions.  

From the mechanical point of view, the underwater explosion 
bubble can be assimilated to an oscillator, consisting of a 
spring mass system where the internal gas is represented by 
the spring and the surrounding water by the mass. The spring 
is initially compressed and will exhibit several pulsations with 
damping phenomena (mainly due to acoustic radiation and 
turbulent vertical motion) before reaching the free surface and 
spreading in the air medium. 

2. THEORETICAL ANALYSIS 

In the case of a pressure-driven gas bubble initiated near a 
rigid infinite wall in an incompressible fluid. In this work, 
surface tension effect was not taken into account because of 
the generally large size of the gas bubbles. Viscous effects are 
also neglected because the timescale for viscous diffusion is 
much larger than the oscillation period for these bubbles. In 
addition, a rectangular coordinate system O-xyz was adopted 
with the origin located at the centre of the initial spherical 
bubble and the z-axis pointing in the opposite direction to 
gravity. The boundary of the bubble is denoted as Sb, which is 
a regular surface before and after the jet impact. The fluid 
domain is denoted by O and it is transformed from a singly 
connected to a doubly connected region during jet impact. 

We assume that the bubbles only contain a non-condensable 
gas, which can be described as ideal and the expansion and 
compression of this gas as adiabatic. The internal bubble 
pressure, P,as a function of the bubble volume, V, is 

𝑃𝑃 = 𝑃𝑃𝑐𝑐 + 𝑃𝑃0(𝑉𝑉0
𝑉𝑉� )𝛾𝛾 (1) 

Where 

Pc = the constant vapour pressure inside the bubble 

P0 = the partial pressure due to non-condensing gas 

V0 = the volume of the bubble at P

γ = the ratio of specific heats 
0 
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Fig. 1: Coordinate System 

The fluid is assumed to be incompressible and the flow 
irrotational, the velocity potential φ is governed by the 
Laplace Equation: 

Ϫ2

Now the velocity, u, anywhere in the flow can be written as 

ɸ = 0             (2) 

U = Ϫφ  (3) 

BEM: The Laplace equation is an elliptic equation, so the 
solution can always be computed everywhere in the fluid 
domain, provided that either the potential, φ (Dirichlet 
condition) or the normal velocity, δφ/δn (Neumann condition) 
is given on the boundaries of the problem. Here δ/δn is the 
normal inward derivative from the boundary, S, and n is 
directed out of the fluid, applying the boundary condition at 
infinite distance ‘∞’ 

22 2 , 0r yx z φ= + + →∞ =  
(4) 

Where r = (x, y, z) is the position vector. The boundary-
integral equation can be written as 

( )( ) ( ( , ) ( ) ( , ))
s

q G p q q G p q d S
n n

δφ δλφ φ
δ δ

Ρ = −∫∫   (5) 

This equation is Green’s integral formula, where S is 
boundary surface including the bubble surface Sb, the free 
surface Sf, and the wall surface Sw

( , ) , ,
s

G p q d S p S
n

δλ
δ

= ∈∫∫

; p and q are fixed particle 
and integral variable on boundary surface S, respectively; λ is 
the solid angle viewed from the point p. λ = 4ᴨ when the point 
p is located inside the flow field, λ = 2ᴨ when the point p is 
located on the smooth boundary surface, and λ< 4ᴨ when the 
point p is located on the corner. The solid angle subtended at 
the governing point p can be obtained through integral as 
follows: 

  (6) 

G (p, q) is the free-space Green’s function for the Laplace 
equation, which is governed by 

1( , )G p q p q −= −     (7) 

3. EMPIRICAL MODELS 

3.1 Similitude Equation 

The similitude equation for the first maximum bubble radius is 
as shown in Eq. (8) 

1
3

max 6 10
WR K

D
 =  +    (8) 

Rmax

D = the charge depth in meter 

 = maximum bubble radius in meters 

W = the charge weight in kilograms 

K6 

The first bubble period, T

= constant depending upon the charge material 

b

( )

1
3

5 5
610

b
WT K

D
=

+

, in seconds is estimated by Eq. (9): 

 

(9) 

K5

( )
12.4

10
Wd

D
∆ =

+

 = constant depends on the charge material 

 
(10) 

Δd = rise in the gas bubble period 

This should be noted that this equation is specific to TNT 

The volume of the gas bubble can be reasonably approximated 
by a half sine function. 

( ) 0 max 0( )sin
b

tV t V V V
T
π 

= + −  
   

(11) 

3
max max

4
3

V Rπ=  

V0

V

 = the initial charge volume 

max

From this volume time relation of the bubble, we can 
determine the radius time history of a gas bubble by  

 = maximum bubble volume 

Eq. (12).
( ) ( )

1
33

4
R t V t

π
 =  
   (12) 

The vertical position of the gas bubble centre, which describes 
its vertical migration, can be approximated by Eq. (13). 

0.4

( ) 1 cos
2 b

tz t d d π  
 = − + ∆ −   Τ    

(13) 

3.2 Similitude Model with Energy Loss 

This approach used the first cycle period constants with an 
energy loss function to determine the radial and migration 
time histories. The energy loss function, given by Eq. (14), 
was provided by van Aanhold, which was based on reduction 
values used by Geers and Hunter. 
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 λ = 0.2575 + (1− 0.2575) exp(− 0.8148m)  (14) 
 

Here λ has an initial value of 1 (m=0), and m is the cycle 
number starting at 0 for detonation and with m=1 for the first 
gas bubble minimum. The energy loss function is 
implemented by reducing the charge mass at each gas bubble 
minimum, such that the new charge weight is λW. This new 
charge weight is input into Eqs. (8) and (10) to determine the 
maximum gas bubble radius, the bubble period, and the 
migration during the next cycle. This energy loss function 
results in a decrease in the maximum gas bubble radius and 
periods by an order of   (λ1/3

Constant 

). 

3.3Experimental fit model 

The average similitude constants for the charge material used 
in this study are shown in Table 1 

Table 1: Demand and deficit for users in command 

TNT 
1st Cycle 2nd Cycle 3rd Cycle 

K5 2.11 1.57 1.33 
K6 3.36 2.27 1.76 

 
The three sets of constants for TNT are based on an 
experimental study by Swift and Decius, who experimentally 
measured the radius and period of the gas bubble. The 
similitude constants were determined as the values producing 
the best fit to the experimental data. For some experiments the 
fits were produced for the first three bubble periods, but for 
most experiments there were only measurements for the first 
one or two bubble periods.  

4. ANALYTICAL MODELS 

4.1 Introduction 
Analytical expressions have been derived for predicting the 
time history of the gas bubble radius and vertical position. 
Although several approaches are available there are limitations 
in the predictive models. Like the similitude equations, the 
analytical models do not predict the influence of a close 
proximity target. The various equations of motion (EOM) 
compared in this paper. 

4.1.1 Lamb EOM 

( )2 13
2 w gas air waa a gzρ ρ−+ = Ρ −Ρ + 

 (15) 
4.1.2 Herring EOM (1941) 

. .
... .
2

1 1 1 1

3 4 1(1 2 ) (1 ) ( )
2 3 3 g hyd g

a a aa a a p p
c c c

ρ
ρ

− + − = − +

 
(16) 

4.1.3 Krikwood and Bethe (1942) & Brinkley and 
Krikwood (1950) EOM. 

. . .
2.. . .

1 1 1 1

3 1(1 ) (1 ) ( )(1 )
2 3 g hyd g

l

a a a aa a a p p p
c c c cρ

− + − = − + +
 (17) 

4.1.4 Keller and Kolodner (KK) EOM(1956 a,b). 
. . .

2.. . . .

1 1 1 1

3 1(1 ) (1 ) [( )(1 )(1 )]
2 3 g hyd g g

l

a a a aa a a p p p p
c c c cρ

− + − = − + +
 

 (18) 

4.1.5 Geer and Hunter DA EOM (2002). 

( )2 13 1
2 w g air w

a daa a gz
c dt

ρ ρ−   + = + Ρ − Ρ −    


 

 (19) 

4.1.6 Geer and Hunter DAA EOM (2002)
. .

2.. .

1
.. .

. .

.
.

1 1

3 2 1 1[1 (1 )].... (1 )
2 3 3 3

(1 )] ( )....

1 [( )(1 ) )]

g g

l l l
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l

l l l

g hyd g
l

a aa a a
c c

a a a c a
c c

a ap p p
c c

ρ ρ
ζ ζ

ρ ρ

ρ
ζ ζ

ρ

ρ

+ − − + + − +

+ + + +

= − + +
 

(20) 

4.1.7 Modified Geers-Hunter (TNO) EOM. 
3 2 2 2 2 2

3 3 2 2

3 4 6 4 1
5

2 4 2
3 3 2

w w w g air w
l

w w w w D

a dW a a a a K a z a P P gz
c dt

W a z a W g a az C a z z

πρ πρ πρ π ρ

ππρ πρ πρ ρ

   + = − + + + − +         
   + = − − +   
   


  

   

(21) 

 (22) 
4.2 Equation of state 

4.2.1 Similitude Equations 

The similitude equations provide three approaches for 
calculating the radial and migration motion time histories with 
Eqs. (11) through(13). For the experimental cases which did 
not have best fits for the first three gas bubble cycles, the 
average values shown in Table 1 were used. This approach 
produces results that are very close to, and can be considered 
to be identical to, the experimental measurements. 

4.2.2 Analytical equations of motion 

The EOM for the analytical models in Eqs. (15) through (22) 
are nonlinear second-order differential equations that need to 
be solved by numerical integration. If the EOM can be 
expressed in the first order form y= f (y,t) , the numerical 
solution is obtained using a fourth-order Runge-Kutta method, 
which has the basic form as shown in Eqs. (23) and (24) 

* ** *
1 1 1 1 1 1 1

2 2 2 2

1 1 1 1[ ( , ) ( , ) ( , ) ( , )]
6 3 3 6i i i i i ii i i i

y y t f y t f y t f y t f y t+ + ++ + + +
= + ∆ + + +

 
(23) 

 
Where yiis the variable at the start of the time step, Δtis the 
time step, and f(y,t) is the first order differential variable 
evaluated at y and t. 
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( , )

2i i ii

ty y f y t
+

∆
= +

** *
1 1 1

2 22

( , )
2i i ii

ty y f y t
+ ++

∆
= +

 (24)
* **

1 1 1
2 2

( , )i i i i
y y tf y t+

+ +
= + ∆

 
A second order differential equation (DE) is reduced to a 
series of first order DEs by creating a dummy variable, in this 
example q, identical to the radial velocity of the gas bubble. 
The dummy variable is substituted into the original DE. Eq. 
(25) shows how this is done to produce two first order 
equations for the Lamb EOM. 

1 2
1

1 3( , ) [ ( ) ]
2w gas air wf q t q p p gz q

a
ρ ρ−= = − + −

 

2 ( , )f q t a q= =  (25) 

For the compressible fluid models the energy loss is inherent 
within the EOM, so there was no additional energy loss 
mechanism considered for this study. 

4.2.3 Constant 

The Swift and Decius report gives no indication of the charge 
density or any other material properties other than the charge 
type. For this reason two sets of charge constants were used 
for comparison purposes. The constants used for the analytical 
models are shown in Table 2         

Table 2: Constants used for solving the analytical models 

Variables Set 1 Set 2 
  Explosive Density (kg/m3) 1500 1630 
  Gas exponent  1.25  4/3 
Adiabatic charge 
Constant (MPa), K 

Compressible  1350 2455 
Incompressible  740  1050 

Drag Coefficient, Cd  2.25  2.25 
Density of seawater (kg/m3)  1025 1025 
Sound velocity in water (m/s)  1500 1500 
Acceleration of gravity (m/s2) 9.80665 9.80665 
 Air pressure (kPa) 101.325 101.325 

5. RESULTS AND ANALYSIS 

5.1   Similitude Model 

The approach uses the experimental results published by Swift 
and Decius to directly calculate the radius and period of each 
bubble cycle, referred to as the “Exp. Fit” model. At the first 
gas bubble minimum the similitude constants are changed to 
the values for the second cycle. The same approach is used at 
the second gas bubble minimum. For the experimental cases 
which did not have best fits for the first three gas bubble 
cycles, the average values shown in Table 1 were used. 

5.2. Similitude Energy Loss Model vs. Experimental Fit 
Model 

Fig. 2 shows a comparison of the experimental measurements 
and the energy loss function used in conjunction with the 
similitude equations. 

From Fig. 2 it can be seen that the energy loss function does 
not provide the required amount of reduction in the bubble 
period or radius. The energy loss function will result in a 
period and radius reduction of approximately 16 percent for 
the second bubble cycle and an additional 10 percent for the 
third bubble cycle. From the experimental fit it was found that 
on average the gas bubble period is reduced by approximately 
25 percent and another 11 percent over the first and second 
bubble cycles respectively. The bubble radius over the first 
and second bubble cycles are reduced by 32 and 15 percent. 

 

 
Fig. 2: Comparison of experimental similitude response and 

similitude with energy loss (function  
(a) Case G5F (b) Case G70F) 

5.3 Analytical Models 

The following sections compare the bubble radius time history 
for the various analytical models, including the effect of fluid 
compressibility and the charge properties on the radius time 
history. Fig. 3(a) shows a typical gas bubble migration time 
history. Due to the small bubble migration, less than 1 percent 
of the total depth, the coupling of bubble depth and radius had 
a negligible effect on the gas bubble radius time histories, as 
shown by Fig. 3(b). 
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Fig. 3: Effect of including bubble migration in the analytical 

model (a) Typical gas bubble migration (b) Radius for a 
migration + dilatation model and dilatation only 

5.4 Effect of Fluid Compressibility 

Fig. 4 shows the bubble radius time history of all analytical 
models for the depth and charge size for test case G5F. Fig. 
4(a) shows that all compressible gas models reduce to the 
Lamb EOM when the fluid becomes incompressible. Fig. 4(b) 
shows a comparison of all the analytical models with the water 
considered as a compressible fluid, with the exception of the 
Lamb EOM which does not have any compressible fluid 
modelling capability. These results are grouped according to 
compressibility. Considering just water compressibility the 
various models show little variation for a detonation depth of 
93 m. The only models that show a significant difference are 
the Lamb EOM which does not consider water compressibility 
and the Geers-Hunter DAA (GH-DAA) model which includes 
compressibility in the water and the gas bubble. The additional 
energy loss factors considered in the GH-DAA formulation 
significantly reduces the maximum gas bubble radius and 
period when compared to the other analytical approaches. 

 

 
Fig. 4: Comparison of analytical bubble radius time history for a 

charge size and detonation depth equivalent to test G17F(a) 
Incompressible Fluid (b) Compressible Fluid 

5.5 Analytical Models vs. Experimental Fit Model. 

Fig. 5 through Fig. 8 compares analytical models with 
experimental fit results. GiF indicates the use of the similitude 
constants for the ithtest number from Swift and Decius. Exp 
Fit indicates the experimental fit constants for all three bubble 
cycles are used. Sim + Loss indicates the first bubble cycle 
similitude constants are used along with the energy loss 
function. For the analytical models it is the name of the model 
followed by the property set from Table 2, where Prop1 
indicates property set 1 and Prop2 is for property set 2. 

 

 
Fig. 5: Comparison of experimental similitude response and the 

Lamb EOM with energy loss function  
(a) 93 m depth (b) 179 m depth 

From Fig. 5 it can be seen that the general behaviour of the 
Lamb EOM follows that of the similitude equation, with a 
slight improvement in the bubble period predictions for the 
Lamb EOM. The same energy loss function is applied to both 
of these models. The energy loss function does not provide the 
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required energy reduction for the Lamb EOM as the peak radii 
and bubble periods of the experimental fits are significantly 
less. 

 

 
Fig. 6: Comparison of experimental similitude response and the 

GH-DA EOM (a) 93 m depth (b) 179 m depth 
 

 

 
Fig. 7: Comparison of experimental similitude response and the 

TNO EOM (a) 93 m depth (b 179 m depth 
 

Comparing Fig. 6 and Fig. 7 shows that including the gas 
inertia effects in the TNO EOM results in negligible 
differences in the gas bubble behaviour at the depth 
considered. These figures also show that the energy loss 

inherent within these models is not sufficient compared to the 
similitude plus energy loss or experimentally fit results.  

 

 
Fig. 8: Comparison of experimental similitude response and the 

GH-DAA EOM (a) 93 m depth (b) 179 m depth 
The compressible fluid models over predict the radius by 27 
and 54 percent for the second and third gas bubble maximums 
and the periods by 11 and 19 percent compared to the 
experimental fit results. 

Fig. 8 shows that the energy loss inherent within the DAA 
EOM formulation produces slightly better bubble radius 
results than that shown by the Lamb EOM and significantly 
better results than the other compressible fluid models. The 
bubble period predicted by the DAA EOM is not as large as 
that imposed by the energy loss function however it is larger 
than that produced by the other compressible fluid analytical 
models. 

In general the two property sets have only a minor effect on 
the later bubble cycles, as shown by the convergence of the 
time histories during the third bubble cycle. 

6. CONCLUSIONS 

An extensive study on the analytical equations of motion 
available for predicting the gas bubble behaviour was 
conducted to determine which models and assumptions 
provide better predictions. Using Mat LAB the various 
analytical models and similitude equations, a code was 
developed. It is also apparent that the energy loss inherent in 
the compressible fluid models does not fully predict the 
energy loss observed in experiments. The percent error in the 
gas bubble period and maximum bubble radius, compared to 
the experimental fits for a detonation depth of approximately 
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93 m and over 150 m, are shown in Table 3 and Table 4 
respectively. The compressible EOM columns are the average 
of the various models that consider only compressibility in the 
surrounding fluid. 

Table 3: Percent error in the gas bubble periods and maximum 
radii predicted by the analytical models compared to the 

experimental fits for a detonation depth of approximately 93 m 

Cycle 
Number 

Lamb EOM (%) Compressible 
EOM 

GH-DAA EOM 
(%) 

Period Radius Period Radius Period Radius 
1st 1.32 1.64 

4 
1.01 1.60 1.39 6.59 

2nd 3.10 22.3 10.9 27.1 6.78 15.45 
3rd 6.47 41.5 19.6 54.5 15.2 37.2 
Table 4: Percent error in the gas bubble periods and maximum 

radii predicted by the analytical models compared to the 
experimental fits for a detonation depth of over 150 m 

Cycle 
Number 

Lamb EOM (%) Compressible 
EOM 

GH-DAA EOM 
(%) 

Period Radius Period Radius Period Radius 
1st 1.01 1.19 1.86 1.75 1.24 7.01 
2nd 5.33 11.3 14.2 14.3 10.6 3.55 
3rd 8.13 39.7 22.8 50.2 19.1 33.2 

 
As these numbers show the Lamb EOM predicts the bubble 
period closer to the experimental fits than the other models. 
This shows that the energy loss function provides a larger loss 
than those inherent within the compressible fluid and GH-
DAA EOM. As would be expected the GH-DAA model which 
accounts for fluid and gas bubble compressibility shows a 
significantly larger energy loss than the EOM considering 
compressibility in the fluid. 

Table 3 and Table 4 show that there is a requirement to 
include an energy loss function in conjunction with the 
compressible fluid models. All models that include only the 
compressibility in the fluid produce results very similar to one 
another; therefore a single energy loss function could be 
developed for all of these models. A method that is proposed 
by Geers and Hunter involves starting from a time shortly 
after detonation, and involves determining the bubble growth 
during the shock-wave phase. This approach allows for the use 
of the gas constant determined from the equations of state to 
be used for the compressible gas models. This approach will 
be introduced into the models in the future. 
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